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NOTE 

A New Lagrangian Method for Steady Supersonic Flow Computation 
Part III. Strong Shocks 

1. INTRODUCTION 

This technical note is a continuation of the two earlier 
papers by the authors ([ 1,2]; hereafter referred to as Part I 
and Part II, respectively) on the new Lagrangian method 
for two-dimensional steady supersonic flow computation. 

In Part I the Godunov shock-capturing scheme was 
applied to the new Lagrangian formulation, and its poten- 
tial advantages were demonstrated. Part II, on the other 
hand, applied a high resolution TVD scheme to the new 
formulation and shows that slip-line discontinuities are 
always resolved, with no special procedure for detecting 
them, in at most two grid points-a result clearly superior 
to the Eulerian formulation. 

In this paper, Part III, we study two special difficulties 
associated with computing steady supersonic flow where 
strong shocks are present. These difficulties are inherited in 
the flow field and thus occur in both Lagrangian and 
Eulerian formulations, but can be tackled more easily in the 
new Lagrangian formulation. 

The first difficulty involves the well-posedness of the 
Cauchy problem and arises when the principle of domain of 
influence for the governing hyperbolic Euler equations is 
violated during marching [3]. This principle is a general 
rule that includes the well-known CFL condition. In the 
Eulerian formulation this is signalled by one component of 
the flow velocity changing from supersonic to subsonic on 
crossing the shock although the actual flow may remain 
supersonic. This happens when the shock is strong enough, 
and it renders the Cauchy problem of marching an ill-posed 
problem. Based on the new Lagrangian formulation, we 
shall analyze the problem and present an easy-to-apply 
numerical remedy for overcoming it in Section 2. 

The second difficulty occurs when the shock is extremely 
strong so that the numerical errors due to Godunov aver- 
aging of flow within a cell containing the shock cause 
the Riemann problem to have no solution. This will be 
discussed in Section 3 and, again, a simple remedy will be 
given for overcoming it. 

2. WELL-POSEDNESS OF THE CAUCHY PROBLEM 
IN GAS DYNAMICS AND ITS 

NUMERICAL TREATMENT 

In the new Lagrangian formulation [ 11, the Euler 
equations of a thermally and calorically perfect gas are 
expressed in the following conservation form 

(1) 

where 

E=(K, H, KuspV, Ku-pU, U, V)’ 

F = (0, 0, -pv, pu, -u, -v)’ 

with U = ax/at and V= ay/ag describing the cell deforma- 
tion rates; K=p(uV-VU), the mass flux and H= 
(u*+v*)/2+ (y/(7- l))(p/p) the total enthalpy; U, v, p, 
and p are the x- and y-velocity components, pressure, 
and density. Here r, the Lagrangian time, and 5, the stream 
function, are the independent variables. An explicit shock- 
capturing scheme (Godunov or TVD) will march forward 
exactly in the flow direction (see [ 1, 21). 

The property of the Lagrangian system (1) that the 
physical flow is closely followed makes the well-posedness 
(numerically, the stability) analysis very easy and 
straightforward. Consider a computational cell (also a fluid 
particle) in Fig. la, where initial values are given along the 
time line OA. For the well-posedness of this local Cauchy 
problem of (l), the basic theory of hyperbolic equation (see 
Courant and Hilbert [3]) stipulates that OA must lie 
upstream of the domains of influence issuing from every 
point along OA; in particular, those fans from the end 
points 0 and A (shaded areas in Fig. la). This immediately 
leads to the following well-posedness (numerical stability) 
condition (or the general CFL condition), 

(2) 
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FIG. 1. (a) Domains of influence; (b) domain of influence for 3D flow; (c) comparison of CFL numbers. 

where /I = tan-‘( V/U) is the inclination of the time line 
vector T = (U, V), 8 is the flow inclination angle, and ,U is 
the local Mach angle. 

When a supersonic gas flow passes through a strong 
shock, (2) could be violated due to the sudden jumps in 6’ 
and p. Consequently, system (1) could become ill-posed 
and numerically instability take place. The criterion (2) 
immediately suggests a remedy: redirect the initial time line 
by properly choosing an initial /I such that (2) is satisfied on 
both sides of the shock. Due to the flexibility of the time line, 
the redirection procedure can be performed even in the 
midst of computation without disturbing the formulation 
and any data already computed. 

For demonstration of the simple remedy, we choose two 
examples and employ a high resolution TVD scheme as 
explained in Part II. With a naive choice of /I = 90” the 
numerical procedures soon blow up in both examples, no 
matter how small a time step size AT is chosen. Redirection 
of time line thus becomes necessary. 

Example 1 is a Riemann problem formed with two inter- 
secting streams as shown in Fig. 2. Twenty uniform cells 
with h = 0.01 are used for the top part and 30 non-uniform 
cells are used for the bottom part. The simple initial choice 
of PO = 90” for both top and bottom parts of the flow field 
leads to failure as (2) is violated on the top part. But with 
/I0 = 150” for the top part and /IO = 90” for the bottom part, 
successful results are obtained. These are shown (with 
square symbols) in Fig. 2 for the Mach number distribution 
along a typical time line. Agreements with exact analytic 
solutions (shown with solid lines) are seen to be excellent. 
Both shock and slip-line discontinuities are captured in one 
grid point. 

In example 2 we compute a supersonic flow past a 
given shape for which experimental results are obtained by 
Johannesen [4]. The forward portion of the body shape 
used in [4] consists of a straight line segment OA making 
an expansion angle of 5.1’ to the oncoming supersonic 

FIG. 2. Mach number along a typical time line in the Riemann 
problem with a strong shock. 

stream M, followed smoothly by a circular arc AB. The 
rear portion BD of the body shape is not specified in [4]. 
But as it produces an expansion flow and hence does not 
affect the flow upstream in an inviscid computation, we 
replace this part by a circular arc BC followed by a straight 
line CD. In the computation 125 uniform cells are used with 
h = 0.02, and AZ = 0.000625. Again the simple choice of 
PO = 90” fails but /I,, = 120” proves succesful. In Fig. 3a 
computed Mach number contours to be compared with 
Johannesen’s experimental results are plotted and 
reproduced here as Fig. 3b. The agreement is seen to be 
excellent in practically every aspect of the flow field: the 
Pradtl-Meyer expansion fan, the converging Mach lines, 
the floating shock, and the vortex sheets downstream of it. 

With the new Lagrangian formulation, the above well- 
posedness analysis can be easily extended to 3D flows 
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FIG. 3. Computed supersonic flow compared with experiment: (a) computed isomachs; (b) Schlieren photograph of Johannesen’s experiment 

(Fig. lb). The criterion is that the time surface passing 
through any point A must lie upstream of the Mach cone 
issuing from A (the domain of influence). 

In the Eulerian formulation, the situation is similar to 
the case /3= 90” (with r direction fixed). Then the only 
choice for resuming stability is to rotate the reference 
frame. Marconi and Morretti [S] employ a local coordinate 
rotation to their non-conservative implicit shock-fitting 
scheme to assure the proper domain of dependence of grid 
points with supersonic velocity in the overall marching 
direction. Obviously, their method is much more compli- 
cated than our simple method of redirecting a time line in 
the new Lagrangian formulation, particularly when con- 
servation form and shock-capturing scheme are involved. 

In addition, it is interesting and worth pointing out 
another advantage of the new Lagrangian formulation over 
its Eulerian counterpart: the scheme may march forward 
with a larger CFL number. This is illustrated in Fig. lc, 
assuming that the initial time line coincides with the y-axis. 
Krispin and Glaz [6] have a similar observation. 

3. SHOCK-CELL SPLITTING TECHNIQUE 

In this section we present a shock-cell splitting technique 
as animprovement of Godunov shock-capturing scheme for 
solving the Euler equations. The importance of this tech- 
nique will be shown to grow with the strength of the shock 
and becomes indespensible for extremely strong shocks 
where the flow downstream of the shock is close to being 
sonic. 

It is well known that Godunov scheme smears admissible 
discontinuities due to conservative cell-averaging. This 
smearing can be so severe and critical in the presence of a 
strong shock that the solution to the Riemann problem 
becomes non-existent. In order to overcome a similar 
problem in 1D hyperbolic conservation laws and to 
improve the accuracy across a strong discontinuity, Harten 
and Hyman [7] introduce the self-adjusting grid method 
based on the Eulerian formulation. Here, for the same 
purpose, we introduce a method which we term the shock- 
cell splitting technique as the Lagrangian counterpart. The 
procedure is, however, different from Harten and Hyman’s. 
We note that the Harten and Hyman method can resolve an 

FIG. 4. Shock-cells and regular cells. 
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FIG. 5. Shock-cell splitting technique. 

0 

-1 a 

isolated shock or an isolated shock or an isolated slipline 
sharply but would be difficult to do so when a slipline inter- 
sects a shock, By contrast, sharp resolution of sliplines is 
already a property of the new Lagrangian formulation 
(Part II) and we need only to improve the resolution of 
shocks. 

We assume that the location of the shock js initially 
known, e.g., boundary shocks originating from the leading 
edge or trailing edge of an airfoil, or at the engine inlet, or 
from a compression corner. 

A computational cell is called a shock-cell when it con- 
tains both the upstream and the downstream part of the 
shock. Cells lying entirely on one side of the shock, 

FIG. 6. Isobars for a M= JO flow past an ogive, Godunov scheme with shock-cell splittmg technique 
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upstream or downstream, will be referred to as regular cells 
(Fig. 4). A major source of error in the Godunov scheme 
arises in averaging the flow within a cell that varies greatly 
across the cell, e.g., the discontinuous flow in a shock-cell. 
We therefore propose that it be improved by splitting the 
shock cell into two subcells jP and j+: the jP cell lying 
entirely upstream of the shock and the j, cell, entirely 
downstream. They are then treated as ordinary cells in the 
usual way in the Godunov method. Within each subcell the 
flow is continuous and the Godunov-averaged uniform flow 
of each subcell is a good approximation for that subcell. 

The details of this shock-cell splitting technique are as 
follows. Suppose it is known that a shock originates at the 
point 0 (Fig. 5) say, 0 being the leading edge of an airfoil. 
Over a time step AT, which is determined by the CFL 
stability conditions for all the cells except cellj, the fluid par- 
ticles on the upper part of cellj have advanced a distance 
qj AT, where qj is the speed of the on-coming stream, while 
those on the lower part of the cell j advance a different 
distance due to a slower speed downstream of the shock. We 
thus split the cell j at the shock into two subcells: the 
upstream subcell jP and the downstream on j,. We use the 
flow state Q, (i.e., u,, vj, pj, and pi) which is known at this 
stage along the time line r, as the state Qjm of the upstream 
subcell j..-. The state Q,, of the down stream subcell j, and 
the shock angle 6, at 0 are obtained from the solution to the 
Riemann problem based on flow states Qj and Q,- , (or 
from the boundary Riemann problem if cell j is boundary 
cell). From the solution we also calculate U,+ and V,+. 
During the subsequent marching in t, the influences of the 
two subcells j, and jP on their respective neighbouring cells 
j + 1 and j - 1 are computed through the Riemann problem 
in the usual way with subcells j, and jP treated as regular 
cells, but the two subcells states Qj_ and Q,, themselves, as 
well as (U, , V,+), are kept unchanged. This marching 
proceeds until the streamline from the upper boundary A of 
the shock cell intersects the shock at B. (The location of B 
is determined from the known states Qjm and Qj+ and the 
shock angle 6, through simple geometrical relation. 
Simultaneously, with each advance AT in time the j, subcell 
(downstream of shock) grows in size while the jP subcell 
shrinks. This process is repeated until the jP subcell size 
shrinks to exactly zero-this is made possible by suitably 
reducing the last time step AZ so that the time line hits the 
shock exactly at B, where AB is a streamline. The upgrading 
to high resolution TVD accuracy applies to all regular cells 
except that shock-cell and the four adjacent cells: j + 2, j + 1, 
j - 1, j - 2. When the j- subcell just disappears (i.e., when B 
is reached), the downstream subcell j, becomes a regular 
cell j and Qj+ becomes the new Qj. However, to account for 
the influence of the cell j- 1 on the shock-cell j during the 
previous time steps, the interaction between the cells j and 
j- 1 is now computed through a Riemann solver (or a 
boundary Riemann solver if j is a boundary cell) and the 

newly coputed Q, (including U, and Vj) is used as the state 
Qj for the new regular cell j. This completes a splitting 
process on one shock-cell. Then we continue to treat cell 
j + 1 as a new shock-cell The cycle of shock-cell splitting can 
be repeated indefinitely. 

The shock-cell splitting technique described above is 
equivalent to shock-fitting and hence gives exact solutions 
on both sides of the shock and resolves the shock crisply 
with its location off by at most one cell. Indeed, for super- 
sonic flow past a compression corner, the shock-cell 
splitting technique reproduces the exact wedge flow. Like 
the shock-fitting method, it requires knowing the initial 
position of the shock. However, unlike the shock-fitting 
method, the shock-cell splitting technique is embedded in 
the overall Godunov shock-capturing scheme and has no 
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FIG. 7. Computed isobars for A4 = 2.5 supersonic stream past a thick 
airfoil, by Godunov scheme with shock-cell splitting technique. 
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FIG. 8. Computed isobars in a shock reflection problem by Godunov scheme with shock-cell splitting technique 

additional difficulty in coding. Moreover, application of 
shock-cell splitting typically cuts down the computing time 
by about 30 %, due to the rapid convergence of the iteration 
process in solving the Riemann problem across the shock. 

We further remark that the need and the effectiveness of 
the shock-cell splitting technique increase with the strength 
of the shock. Weak shocks are captured quite well by the 
Godunov scheme without a shock-cell splitting technique; 
they are also notoriously difficult to detect and hence 
difficult to do shock-cell splitting. Extremely strong shocks, 
on the other hand, which the Godunov scheme might fail to 
capture, can be captured very well with the shock-cell 
splitting technique since they can be detected relatively 
easily. 

an ogive; the leading edge and angle of the ogive is 44.42”. 
The standard Godunov or TVD scheme (Parts I and II) 
fails to converge for this problem, whilst the shock-cell 
splitting technique works very well and produces a crisp 
shock profile. 

Figure 7 illustrates the isobars of a M = 2.5 flow past a 
thick airfoil. The same problem was solved by Holt [9] 
with a BVLR shock-fitting method. It is observed that the 
bow shock profiles agree very well. The tail shock is 
captured in a regular way. 

Figure 8 shows the computed isobars for the inlet flow at 
a turbo machine, with M= 10. Both incipient curved shock 
and reflected curved shock are seen resolved crisply. 

When the shock-cell splitting technique is applied the 
shock is resolved accurately (to infinite order so to speak!) 
with its location possibly off by at most one cell. A tirst- 
order Godunov scheme combined with this technique is 
therefore expected to yield results with high accuracy. This 
indeed has been confirmed by our numerical experiments 
compared with the second-order TVD schemes. In 
Figs. 68, only the first-order results are presented. 
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